๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ
AI/Stanford CS231n

Lecture 13. Generative Models

by coderSohyun 2024. 2. 13.

 

Overview 

- Unsupervised Learning

- Generative Models

  • PixelRNN and PixelCNN
  • Variational Autoencoders (VAE) 
  • Generative Adversarial Networks (GAN)

Classification : Input : Image Output : Text (Label)

Object Detection : Input : Image Output : Bounding Boxes of instances

Semantic Segmentation (having label for every pixel) : ?

Image Captioning : Input : Image Output : Caption (form of natural language) 

 

???

K-means clustering 

Principal Component Analysis (Dimensionality reduction) : ์„ค๋ช…~~

Autoencoders (Feature Learning) : ์„ค๋ช…~~

2-d density estimation 

 

 

 

So why do we care about Generative Models? 

able to create realistic samples from the data distributions

can get completely new generated samples 

'AI > Stanford CS231n' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

Lecture 2. Image Classification  (0) 2024.02.16