Overview
- Unsupervised Learning
- Generative Models
- PixelRNN and PixelCNN
- Variational Autoencoders (VAE)
- Generative Adversarial Networks (GAN)
Classification : Input : Image Output : Text (Label)
Object Detection : Input : Image Output : Bounding Boxes of instances
Semantic Segmentation (having label for every pixel) : ?
Image Captioning : Input : Image Output : Caption (form of natural language)
???
K-means clustering
Principal Component Analysis (Dimensionality reduction) : ์ค๋ช ~~
Autoencoders (Feature Learning) : ์ค๋ช ~~
2-d density estimation
So why do we care about Generative Models?
able to create realistic samples from the data distributions
can get completely new generated samples
'AI > Stanford CS231n' ์นดํ ๊ณ ๋ฆฌ์ ๋ค๋ฅธ ๊ธ
Lecture 2. Image Classification (0) | 2024.02.16 |
---|